Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Biomol Struct Dyn ; : 1-13, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38174386

RESUMO

With the help of both theoretical as well as experimental research, in vitro binding research with CT-DNA (calf thymus) and BSA (bovine serum albumin) were carefully examined to figure out the chemotherapeutic and pharmacokinetic facets of the Erbium complex, which contains 1,10-phenanthroline (Phen). The binding characteristics and the mechanism of complex's interaction with DNA as well as the protein were determined utilizing fluorescence quenching method. Findings indicated that the complex's interaction with DNA via groove binding into DNA's minor grooves, with their binding constants falling within the 104 M-1 range. Furthermore, thermodynamic characteristics and the fluorescence emission of the tryptophan residues of the protein were obtained through fluorescence quenching studies at different temperatures. According to the results of the binding constants, the protein's interactions with the Er- complex were moderate, demonstrating that the compound may be transported effectively by the protein. Molecular docking results supported that of the experimental research. The HeLa and MCF-7 cancer cell lines, along with the normal human fibroblast cell line, were used in an MTT assay evaluation of the Er-complex cytotoxicity. The Er-complex displayed a selective inhibitory effect on the proliferation of different cancer cells.Communicated by Ramaswamy H. Sarma.

2.
RSC Adv ; 13(42): 29594-29606, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37822666

RESUMO

The 2,4,6-tris(2-pyridyl)-1,3,5-triazine (tptz), [Ru(µ-tptz)2]Cl2 and [Fe(µ-tptz)2]Cl2, complexes containing Ru (1) and Fe (2) are created. Using electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, viscosity measurement and electrochemistry, as well as two complexes with Fish Salmon DNA (FS-DNA), the binding interactions of these complexes were investigated. According to binding assays, complexes bind to DNA through a mild intercalation mechanism, most likely via the DNA helix's base pairs being intercalated by the tptz ligand. Additionally, complex (2) is more capable of binding than complex (1). The electrochemical method offers a quick and easy way to determine the binding constant (Kb). The antibacterial performance of these complexes versus Gram-positive and Gram-negative bacteria was examined using the zone of inhibition test, MIC, and MBC method, and the results revealed that complex (2) exhibits strong antibacterial activity against these bacteria. The outcomes of this investigation will help in understanding DNA interaction mechanisms as well as the creation of a prospective one. Additionally, the density functional theory (DFT) computation included probes of DNA structure and conformation as well as potential pharmacological regulators for particular disorders to fully explain the experimental results.

3.
Molecules ; 28(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513420

RESUMO

The discovery of multi-targeted kinase inhibitors emerged as a potential strategy in the therapy of multi-genic diseases, such as cancer, that cannot be effectively treated by modulating a single biological function or pathway. The current work presents an extension of our effort to design and synthesize a series of new quinazolin-4-one derivatives based on their established anti-cancer activities as inhibitors of multiple protein kinases. The cytotoxicity of the new derivatives was evaluated against a normal human cell line (WI-38) and four cancer lines, including HepG2, MCF-7, MDA-231, and HeLa. The most active compound, 5d, showed broad-spectrum anti-cancer activities against all tested cell lines (IC50 = 1.94-7.1 µM) in comparison to doxorubicin (IC50 = 3.18-5.57 µM). Interestingly, compound 5d exhibited lower toxicity in the normal WI-38 cells (IC50 = 40.85 µM) than doxorubicin (IC50 = 6.72 µM), indicating a good safety profile. Additionally, the potential of compound 5d as a multi-targeted kinase inhibitor was examined against different protein kinases, including VEGFR2, EGFR, HER2, and CDK2. In comparison to the corresponding positive controls, compound 5d exhibited comparable activities in nanomolar ranges against HER2, EGFR, and VEGFR2. However, compound 5d was the least active against CDK2 (2.097 ± 0.126 µM) when compared to the positive control roscovitine (0.32 ± 0.019 µM). The apoptotic activity investigation in HepG2 cells demonstrated that compound 5d arrested the cell cycle at the S phase and induced early and late apoptosis. Furthermore, the results demonstrated that the apoptosis pathway was provoked due to an upregulation in the expression of the proapoptotic genes caspase-3, caspase-9, and Bax and the downregulation of the Bcl-2 anti-apoptotic gene. For the in silico docking studies, compound 5d showed relative binding interactions, including hydrogen, hydrophobic, and halogen bindings, with protein kinases that are similar to the reference inhibitors.


Assuntos
Antineoplásicos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/química , Receptores ErbB/metabolismo , Doxorrubicina/farmacologia , Apoptose , Inibidores de Proteínas Quinases/química
4.
Biomed Res Int ; 2023: 6325568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415928

RESUMO

Antibiotic resistance is a major public health concern that has resulted in high healthcare costs, increased mortality, and the emergence of novel bacterial diseases. Cardiobacterium valvarum, an antibiotic-resistant bacterium, is one of the leading causes of heart disease. Currently, there is no licensed vaccination against C. valvarum. In this research, an in silico-based vaccine was designed against C. valvarum using reverse vaccinology, bioinformatics, and immunoinformatics techniques. 4206 core proteins, 2027 nonredundant proteins, and 2179 redundant proteins were predicted. Among nonredundant proteins, 23 proteins were predicted in an extracellular membrane, 30 in the outer membrane, and 62 in the periplasmic membrane region. After applying several subtractive proteomics filters, two proteins, TonB-dependent siderophore receptor and hypothetical protein, were chosen for epitope prediction. In the epitope selection phase, B and T-cellepitopes were analyzed and shortlisted for vaccine design. The vaccine model was designed by linking selected epitopes with GPGPG linkers to avoid flexibility. Furthermore, the vaccine model was linked to cholera toxin B adjuvant to induce a proper immune response. The docking approach was utilized to analyze binding affinity to immune cell receptors. Molecular docking results predicted 12.75 kcal/mol for a Vaccine with MHC-I, 6.89 for a vaccine with MHC-II, and 19.51 vaccine with TLR-4. The MMGBSA estimated -94, -78, and -76 kcal/mol for TLR-4 and vaccine, MHC-I and vaccine, and MHC-II and vaccine, while the MMPBSA analysis estimated -97, -61, and -72 kcal/mol for TLR-4 with the vaccine, MHC-I with vaccine, and MHC-II with a vaccine. Molecular dynamic simulation analysis revealed that the designed vaccine construct has proper stability with immune cell receptors as it is essential for inducing an immune response. In conclusion, we observed that the model vaccine candidate has the potency to induce an immune response in the host. However, the study is designed purely on a computational basis; hence, experimental validation is strongly recommended.


Assuntos
Vacinas Bacterianas , Simulação de Acoplamento Molecular , Proteoma/imunologia , Proteínas de Bactérias/imunologia , Epitopos/imunologia , Linfócitos T/imunologia
5.
Biomedicines ; 11(4)2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37189822

RESUMO

Diabetic polyneuropathy is characterized by structural abnormalities, oxidative stress, and neuroinflammation. The current study aimed to determine the antinociceptive effects of isoeugenol and eugenol and their combinations in neuropathic pain resulting from streptozotocin (STZ)-induced diabetes and neuroinflammation. Female SD rats were categorized into normal control, diabetic control, and treatment groups. On the 28th day and 45th day, behavioral studies (allodynia and hyperalgesia) were performed to analyze the development and protection of diabetic polyneuropathy. The levels of inflammatory and oxidative mediators, such as superoxide dismutase (SOD), tumor necrosis factor-α (TNF-α), catalase, reduced glutathione, and thiobarbituric acid reactive substances (TBARS), were estimated. In addition, the level of nerve growth factor (NGF) was estimated at the end of the study in different groups. The anti-NGF treatment decreased its upregulation in the dorsal root ganglion significantly. The results showed that isoeugenol, eugenol, and their combination have therapeutic potential against neuronal and oxidative damage induced by diabetes. In particular, both compounds significantly affected behavioral function in treated rats and showed neuroprotection against diabetic neuropathy, and their combination had synergistic effects.

6.
Biomed Res Int ; 2023: 5560605, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101690

RESUMO

A hemorrhagic fever caused by the Marburg virus (MARV) belongs to the Filoviridae family and has been classified as a risk group 4 pathogen. To this day, there are no approved effective vaccinations or medications available to prevent or treat MARV infections. Reverse vaccinology-based approach was formulated to prioritize B and T cell epitopes utilizing a numerous immunoinformatics tools. Potential epitopes were systematically screened based on various parameters needed for an ideal vaccine such as allergenicity, solubility, and toxicity. The most suitable epitopes capable of inducing immune response were shortlisted. Epitopes with population coverage of 100% and fulfilling set parameters were selected for docking with human leukocyte antigen molecules, and binding affinity of each peptide was analyzed. Finally, 4 CTL and HTL each while 6 B cell 16-mers were used for designing multiepitope subunit (MSV) and mRNA vaccine joined via suitable linkers. Immune simulations were used to validate the constructed vaccine's capacity to induce a robust immune response whereas molecular dynamics simulations were used to confirm epitope-HLA complex stability. Based on these parameter's studies, both the vaccines constructed in this study offer a promising choice against MARV but require further experimental verification. This study provides a rationale point to begin with the development of an efficient vaccine against Marburg virus; however, the findings need further experimental validation to confirm the computational finding of this study.


Assuntos
Marburgvirus , Humanos , Simulação de Acoplamento Molecular , Simulação por Computador , Epitopos de Linfócito T , Antígenos de Histocompatibilidade Classe I , Biologia Computacional , Vacinas de Subunidades , Epitopos de Linfócito B
7.
J Biomol Struct Dyn ; : 1-11, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37099644

RESUMO

Acinetobacter baumannii is an opportunistic pathogen with ability to cause serious infection such as bacteremia, ventilator associated pneumonia, and wound infections. As strains of A. baumannii are resistant to almost all clinically used antibiotics and with the emergence of carbapenems resistant phenotypes warrants the search for novel antibiotics. Considering this, herein, a series of computer aided drug designing approach was utilized to search novel chemical scaffolds that bind stronger to MurE ligase enzyme of A. baumannii, which is involved peptidoglycan synthesis. The work identified LAS_22461675, LAS_34000090 and LAS_51177972 compounds as promising binding molecules with MurE enzyme having binding energy score of -10.5 kcal/mol, -9.3 kcal/mol and -8.6 kcal/mol, respectively. The compounds were found to achieve docked inside the MurE substrate binding pocket and established close distance chemical interactions. The interaction energies were dominated by van der Waals and less contributions were seen from hydrogen bonding energy. The dynamic simulation assay predicted the complexes stable with no major global and local changes noticed. The docked stability was also validated by MM/PBSA and MM/GBSA binding free energy methods. The net MM/GBSA binding free energy of LAS_22461675 complex, LAS_34000090 complex and LAS_51177972 complex is -26.25 kcal/mol, -27.23 kcal/mol and -29.64 kcal/mol, respectively. Similarly in case of MM-PBSA, the net energy value was in following order; LAS_22461675 complex (-27.67 kcal/mol), LAS_34000090 complex (-29.94 kcal/mol) and LAS_51177972 complex (-27.32 kcal/mol). The AMBER entropy and WaterSwap methods also confirmed stable complexes formation. Further, molecular features of the compounds were determined that predicted compounds to have good druglike properties and pharmacokinetic favorable. The study concluded the compounds to good candidates to be tested by in vivo and in vitro experimental assays.Communicated by Ramaswamy H. Sarma.

8.
Sci Rep ; 13(1): 7014, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117557

RESUMO

The acquired drug resistance by Mycobacterium tuberculosis (M. tuberculosis) to antibiotics urges the need for developing novel anti-M. tuberculosis drugs that possess novel mechanism of action. Since traditional drug discovery is a labor-intensive and costly process, computer aided drug design is highly appreciated tool as it speeds up and lower the cost of drug development process. Herein, Asinex antibacterial compounds were virtually screened against thioesterase domain of Polyketide synthase 13, a unique enzyme that forms α-alkyl ß-ketoesters as a direct precursor of mycolic acids which are essential components of the lipid-rich cell wall of M. tuberculosis. The study identified three drug-like compounds as the most promising leads; BBB_26582140, BBD_30878599 and BBC_29956160 with binding energy value of - 11.25 kcal/mol, - 9.87 kcal/mol and - 9.33 kcal/mol, respectively. The control molecule binding energy score is -9.25 kcal/mol. Also, the docked complexes were dynamically stable with maximum root mean square deviation (RMSD) value of 3 Å. Similarly, the MM-GB\PBSA method revealed highly stable complexes with mean energy values < - 75 kcal/mol for all three systems. The net binding energy scores are validated by WaterSwap and entropy energy analysis. Furthermore, The in silico druglike and pharmacokinetic investigation revealed that the compounds could be suitable candidates for additional experimentations. In summary, the study findings are significant, and the compounds may be used in experimental validation pipeline to develop potential drugs against drug-resistant tuberculosis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Policetídeo Sintases , Simulação de Dinâmica Molecular , Antituberculosos/farmacologia , Antituberculosos/química , Descoberta de Drogas , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Simulação de Acoplamento Molecular
9.
RSC Adv ; 13(18): 12361-12374, 2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37091601

RESUMO

Plants of the genus Centaurea have been widely used as natural therapeutics in different countries. This study investigated the antioxidant-structure activity relationship of eight flavonoids isolated from Centaurea scoparia using DFT studies and in vitro radical scavenging and xanthine oxidase (XO) inhibition assays, and to correlate the theoretical values with the experimental findings. Docking analysis was carried out to explore the binding modes of the isolated phytochemicals with XO and bovine ß-lactoglobulin (BLG). Interactions of the isolated compounds with BLG were studied using molecular dynamics (MD) simulations which revealed the involvement of hydrogen bonding. The root-mean-square deviation (RMSD) of BLG and BLG-flavonoid complexes reached equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration (Rg) and solvent accessible surface area (SASA) revealed that various systems were stabilized at approximately 2500 ps. In addition, the RMS fluctuations profile indicated that the ligand's active site exerted rigidity behavior during the simulation. The hydrogen atom transfer (HAT) and the energies of hydrogen abstractions were estimated by calculating the bond dissociation enthalpy (BDE) of O-H in gas phase and water. The isolated compounds showed radical scavenging and XO inhibitory activities along with binding affinity with XO as revealed in silico. The BDE was linked to the radical scavenging processes occurring in polar solvents. These processes are single electron transfer followed by proton transfer (SET-PT) and sequential proton loss electron transfer (SPLET). Our calculations indicated the agreement between the calculated results and the experimentally measured antioxidant activity of the flavonoids isolated from C. scoparia.

10.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049948

RESUMO

As fewer therapeutic options are available for treating toxoplasmosis, newer antiparasitic drugs that can block TgAPN2 M1 aminopeptidase are of significant value. Herein, we employed several computer-aided drug-design approaches with the objective of identifying drug molecules from the Asinex library with stable conformation and binding energy scores. By a structure-based virtual screening process, three molecules-LAS_52160953, LAS_51177972, and LAS_52506311-were identified as promising candidates, with binding affinity scores of -8.6 kcal/mol, -8.5 kcal/mol, and -8.3 kcal/mol, respectively. The compounds produced balanced interacting networks of hydrophilic and hydrophobic interactions, vital for holding the compounds at the docked cavity and stable binding conformation. The docked compound complexes with TgAPN2 were further subjected to molecular dynamic simulations that revealed mean RMSD for the LAS_52160953 complex of 1.45 Å), LAS_51177972 complex 1.02 Å, and LAS_52506311 complex 1.087 Å. Another round of binding free energy validation by MM-GBSA/MM-PBSA was done to confirm docking and simulation findings. The analysis predicted average MM-GBSA value of <-36 kcal/mol and <-35 kcal/mol by MM-PBSA. The compounds were further classified as appropriate candidates to be used as drug-like molecules and showed favorable pharmacokinetics. The shortlisted compounds showed promising biological potency against the TgAPN2 enzyme and may be used in experimental validation. They may also serve as parent structures to design novel derivatives with enhanced biological potency.


Assuntos
Anti-Infecciosos , Toxoplasma , Toxoplasma/metabolismo , Antiparasitários/farmacologia , Antiparasitários/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Anti-Infecciosos/metabolismo , Biologia Computacional
11.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903599

RESUMO

One of the most promising drugs recently approved for the treatment of various types of cancer is dacomitinib, which belongs to the tyrosine kinase inhibitor class. The US Food and Drugs Administration (FDA) has recently approved dacomitinib as a first-line treatment for patients suffering from non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. The current study proposes the design of a novel spectrofluorimetric method for determining dacomitinib based on newly synthesized nitrogen-doped carbon quantum dots (N-CQDs) as fluorescent probes. The proposed method is simple and does not require pretreatment or preliminary procedures. Since the studied drug does not have any fluorescent properties, the importance of the current study is magnified. When excited at 325 nm, N-CQDs exhibited native fluorescence at 417 nm, which was quantitatively and selectively quenched by the increasing concentrations of dacomitinib. The developed method involved the simple and green microwave-assisted synthesis of N-CQDs, using orange juice as a carbon source and urea as a nitrogen source. The characterization of the prepared quantum dots was performed using different spectroscopic and microscopic techniques. The synthesized dots had consistently spherical shapes and a narrow size distribution and demonstrated optimal characteristics, including a high stability and a high fluorescence quantum yield (25.3%). When assessing the effectiveness of the proposed method, several optimization factors were considered. The experiments demonstrated highly linear quenching behavior across the concentration range of 1.0-20.0 µg/mL with a correlation coefficient (r) of 0.999. The recovery percentages were found to be in the range of 98.50-100.83% and the corresponding relative standard deviation (%RSD) was 0.984. The proposed method was shown to be highly sensitive with a limit of detection (LOD) as low as 0.11 µg/mL. The type of mechanism by which quenching took place was also investigated by different means and was found to be static with a complementary inner filter effect. For quality purposes, the assessment of the validation criteria adhered to the ICHQ2(R1) recommendations. Finally, the proposed method was applied to a pharmaceutical dosage form of the drug (Vizimpro® Tablets) and the obtained results were satisfactory. Considering the eco-friendly aspect of the suggested methodology, using natural materials to synthesize N-CQDs and water as a diluting solvent added to its greenness profile.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Pontos Quânticos , Humanos , Pontos Quânticos/química , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Carbono/química , Nitrogênio/química
12.
ACS Omega ; 8(5): 4608-4615, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36777578

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common age-related and slowly progressive neurodegenerative disease that affects approximately 1% of the elderly population. In recent years, phytocomponents have aroused considerable interest in the research for PD treatment as they provide a plethora of active compounds including antioxidant and anti-inflammatory compounds. Herein, we aimed to investigate the anti-Parkinson's effect of barbigerone, a natural pyranoisoflavone possessing antioxidant activity in a rotenone-induced rat model of PD. METHODS: To evaluate antioxidant activity, a 0.5 mg/kg dose of rotenone was injected subcutaneously into rats. Barbigerone (10 and 20 mg/kg) was administered to rats for 28 days 1 h prior to rotenone. All behavioral parameters were assessed before sacrificing the rats. On the 29th day, all of the rats were humanely killed and assessed for biochemical changes in antioxidant enzymes (superoxide dismutase, glutathione, malondialdehyde, and catalase), neurotransmitter levels (dopamine, 5-hydroxyindoleacetic acid, serotonin, dihydroxyphenylacetic acid, and homovanillic acid levels), and neuroinflammatory cytokines [interleukin (IL)-1ß, tumor necrosis factor-α, nuclear factor kappa B, and IL-6]. RESULTS: The data presented in this study has shown that barbigerone attenuated rotenone-induced motor deficits including the rotarod test, catalepsy, akinesia, and open-field test. Additionally, barbigerone has shown improvements in the biochemical and neuroinflammatory parameters in the rotenone-induced rat model of PD. CONCLUSION: The results demonstrated that barbigerone exhibits antioxidant and anti-inflammatory actions via reducing oxidative stress and inflammatory cytokines. Altogether, these findings suggest that barbigerone could potentially be utilized as a therapeutic agent against PD.

13.
Gels ; 9(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36826301

RESUMO

Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of -18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1ß, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund's complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators.

14.
J Biomol Struct Dyn ; 41(23): 14450-14459, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36812293

RESUMO

The emergence of artemisinin resistance by malaria parasites is a major challenge in the fight against malaria, thus posing serious threat to the public health across the world. To tackle this, antimalarial drugs with unconventional mechanisms are therefore urgently needed. It has been reported that selective starvation of Plasmodium falciparum by blocking the function of hexose transporter 1 (PfHT1) protein, the only known transporter for glucose uptake in P. falciparum, could provide an alternative approach to fight the drug resistant malaria parasites. In this study, three high affinity molecules (BBB_25784317, BBB_26580136 and BBB_26580144) that have shown the best docked conformation and least binding energy with PfHT1 were shortlisted. The docking energy of BBB_25784317, BBB_26580136 and BBB_26580144 with PfHT1 were -12.5, -12.1 and -12.0 kcal/mol, respectively. In the follow up simulation studies, the protein 3D structure maintains considerable stability in the presence of the compounds. It was also observed that the compounds produced a number of hydrophilic and hydrophobic interactions with the protein allosteric site residues. This demonstrates strong intermolecular interaction guided by close distance hydrogen bonds of compounds with Ser45, Asn48, Thr49, Asn52, Ser317, Asn318, Ile330 and Ser334. Revalidation of compounds binding affinity was conducted by more appropriate simulation based binding free energy techniques (MM-GB/PBSA and WaterSwap). Additionally, entropy assay was performed that further strengthen the predictions. In silico pharmacokinetics confirmed that the compounds would be suitable candidates for oral delivery due to their high gastrointestinal absorption and less toxic reaction. Overall, the predicted compounds are promising and could be further sought as antimalarial leads and subjected to thorough experimental investigations.Communicated by Ramaswamy H. Sarma.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Antimaláricos/química , Plasmodium falciparum/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Transporte de Monossacarídeos/uso terapêutico , Proteínas de Protozoários/química , Hexoses , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Malária/parasitologia , Simulação de Acoplamento Molecular
15.
J Chromatogr Sci ; 61(4): 329-338, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-36644892

RESUMO

The current research work describes the development of a simple, fast, sensitive and efficient bioanalytical UPLC/MS-MS method for the simultaneous estimation of diclofenac and resveratrol in mice skin samples. Quetiapine was used as an internal standard (IS). Analytical separation was performed on ACQUITY UPLC C18 Column (2.1 × 100 mm; 1.7 µm) using ammonium acetate (5 mM) in water and methanol (B) with isocratic elution at ratio of (50, 50 v/v) and flow rate of 0.4 mL/min. The duration of separation was maintained for 3 min. Electrospray ionization mass spectrometry in a positive and negative ionization mode was used for detection. Selective ion mode monitoring was used for the quantification of m/z 296.025> 249.93 for diclofenac, m/z 229.09 > 143.03 for resveratrol and MRM/ES+ve mode applied in m/z 384.25> 253.189 for IS transitions from parent to daughter ion. The lower detection and quantification limits were accomplished, and precision (repeatability and intermediate precision) with a coefficient of variation below 10% produced satisfactory results. The developed bioanalytical method was found to be useful for its suitability for the dermatokinetic evaluation of treatments through rat skin. Improvement in AUC (1.58-fold for diclofenac and 1.60-fold for resveratrol) and t1/2 in the dermis (2.13 for diclofenac and 2.21-fold for resveratrol) followed by epidermis was observed for diclofenac and resveratrol-loaded liposomal gel formulation over the conventional gel. Overall, the developed method for the dermatokinetic studies of the above-mentioned dual drugs-loaded liposome gel was found to be reproducible and effective for bioanalytical.


Assuntos
Pele , Lipossomos/química , Géis/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Animais , Camundongos , Pele/química , Diclofenaco/química , Resveratrol/química , Calibragem
16.
Molecules ; 27(21)2022 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-36363986

RESUMO

Background: Europinidin is a derivative of delphinidin obtained from the plants Plumbago Europea and Ceratostigma plumbaginoides. This herb has wide medicinal applications in treating various diseases but there are very few studies available on this bioactive compound. Considering this background, the present study is designed for the evaluation of Europinidin against Parkinson's disease. Aim: The investigation aims to assess the effect of Europinidin in the rotenone-activated Parkinson's paradigm. Methods: To evaluate neuroprotective activity, rotenone (1.5 mg/kg s.c) and europinidin (10 mg/kg and 20 mg/kg) was administered in rats for 21 days. The behavioural parameters were performed before sacrificing the rats. On the 22nd day, all the rats were assessed for biochemical markers (SOD, GSH, MDA, Catalase), neurotransmitter levels (Dopamine, 5-HIAA, DOPAC, and HVA levels), and neuroinflammatory markers (IL-6, IL-1ß and TNF-α). Results: It was found that rotenone produced significant (p < 0.001) oxidative damage, a cholinergic deficit, dopaminergic loss, and a rise in neuroinflammatory markers in rats. Conclusion: The study concludes that europinidin possesses anti-oxidant and anti-inflammatory properties. The results suggest the therapeutic role of europinidin against rotenone-activated behavioural, biochemical, and neuroinflammatory alterations in rats.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Ratos , Rotenona , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Peroxidação de Lipídeos , Citocinas/metabolismo , Roedores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Dopamina/metabolismo , Modelos Animais de Doenças
17.
Molecules ; 27(21)2022 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-36364443

RESUMO

Stability-indicating methods are awesome tools to ensure the safety and efficacy of active pharmaceutical ingredients (APIs). An accurate comparative study involving the use of potentiometric sensors for the determination of bromazepam (BRZ) in the presence of its main product of degradation and impurity was performed by the fabrication of two membrane electrodes. A screen-printed electrode (SPE) and a solid-contact glassy carbon electrode (SCE) were fabricated and their performance optimized. The fabricated sensors showed a linear electrochemical response in the concentration range 1.0 × 10-6 M to 1.0 × 10-2 M. The electrodes exhibited Nernstian slopes of 59.70 mV/decade and 58.10 mV/decade for the BRZ-SPE and BRZ-SCE membrane electrodes, respectively. The electrochemical performance was greatly affected by the medium pH. They showed an almost ideal electrochemical performance between pH 3.0 and pH 6.0. The fabricated membranes were applied successfully for the quantification of BRZ in the presence of up to 90% of its degradation product. Moreover, a successful application of the fabricated electrodes was performed for the sensitive and selective quantification of BRZ in its tablet form without any pretreatment procedure.


Assuntos
Bromazepam , Eletrodos , Potenciometria , Carbono , Comprimidos
18.
Artigo em Inglês | MEDLINE | ID: mdl-36293632

RESUMO

Epstein-Barr Virus (EBV) is a human pathogen that has a morbidity rate of 90% in adults worldwide. Infectious mononucleosis is caused by EBV replication in B cells and epithelial cells of the host. EBV has also been related to autoimmune illnesses, including multiple sclerosis and cancers like nasopharyngeal carcinomas and Burkitt's lymphoma. Currently, no effective medications or vaccinations are available to treat or prevent EBV infection. Thus, the current study focuses on a bioinformatics approach to design an mRNA-based multi-epitope (MEV) vaccine to prevent EBV infections. For this purpose, we selected six antigenic proteins from the EBV proteome based on their role in pathogenicity to predict, extract, and analyze T and B cell epitopes using immunoinformatics tools. The epitopes were directed through filtering parameters including allergenicity, toxicity, antigenicity, solubility, and immunogenicity assessment, and finally, the most potent epitopes able to induce T and B cell immune response were selected. In silico molecular docking of prioritized T cell peptides with respective Human Leukocytes Antigens molecules, were carried out to evaluate the individual peptide's binding affinity. Six CTL, four HTL, and ten linear B cell epitopes fulfilled the set parameters and were selected for MEV-based mRNA vaccine. The prioritized epitopes were joined using suitable linkers to improve epitope presentation. The immune simulation results affirmed the designed vaccine's capacity to elicit a proper immune response. The MEV-based mRNA vaccine constructed in this study offers a promising choice for a potent vaccine against EBV.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Humanos , Herpesvirus Humano 4/genética , Epitopos de Linfócito B/química , Epitopos de Linfócito B/genética , Infecções por Vírus Epstein-Barr/prevenção & controle , Simulação de Acoplamento Molecular , Epitopos de Linfócito T/genética , Epitopos de Linfócito T/química , RNA Mensageiro/genética , Proteoma , Imunidade , Peptídeos , Biologia Computacional/métodos , Vacinas de mRNA
19.
J Chromatogr Sci ; 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35989674

RESUMO

A validated ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the first-ever simultaneous analysis of neratinib, curcumin and internal standard (imatinib) using acetonitrile as the liquid-liquid extraction medium. On a BEH C18 (100 mm × 2.1 mm, 1.7 µm) column, the analytes were separated isocratically using acetonitrile (0.1% formic acid):0.002M ammonium acetate. The flow rate was set at 0.5 mL.min-1. The authors utilized multiple reaction monitoring-based transitions for the precursor-to-product ion with m/z 557.099 â†’ 111.928 for neratinib, m/z 369.231 â†’ 176.969 curcumin and m/z 494.526 â†’ 394.141 for imatinib during the study. Validation of the method as per United States Food and Drug Administration requirements for linearity (5-40 ng mL-1), accuracy and precision, stability, matrix effect, etc. were investigated and were observed to be acceptable. Afterward, we evaluated the method for establishing its greenness profile by using two greenness assessment tools and found it green. Overall, a reliable green UPLC-MS/MS method was devised and used to estimate neratinib and curcumin in human plasma simultaneously.

20.
Cells ; 11(5)2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35269433

RESUMO

Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.


Assuntos
Toxoplasma , Toxoplasmose , Células Endoteliais , Interações Hospedeiro-Parasita , Humanos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...